研究室 Feed

2021年6月 8日 (火)

蹄に影響する栄養

はじめに

 “蹄なくして馬なし”と言われるように、馬が健康でそのパフォーマンスを十分に発揮するためには、蹄が健常であることが重要であることは言うまでもありません。「蹄が健常である」とは、蹄葉炎などの蹄疾患がないということは当然ですが、蹄壁の欠けや裂けがなく、蹄が適切なペースで伸長している状態を指します。蹄の伸長には、裂蹄を発症しづらいなど蹄角質そのものの特性、遺伝的要素、運動状況、あるいは気候や飼養状況などの外的環境要因などが影響することが知られていますが、実は栄養状態も大きく影響しています。今回は、この蹄の健常性に影響する栄養についてご紹介します。

タンパク質

 蹄の角質(蹄壁や蹄叉)は、主にケラチンと呼ばれるタンパク質から構成されています。一方、生体を構成するアミノ酸には20種類がありますが、そのうちイオウ(S)の原子を含むアミノ酸は含硫アミノ酸と呼ばれます。タンパク質の一つであるケラチンは組織の硬質性に寄与していますが、その硬質性には含硫アミノ酸のイオウ同士の結合が重要な役割を担っており、特に蹄のケラチンにおいてはこの硬質性の点から含硫アミノ酸であるメチオニンやシスチンの存在が重要となります。中でも必須アミノ酸※でもあるメチオニンの摂取不足は、蹄の脆弱化や伸長鈍化の原因となります。しかし、このメチオニンは一般的な配合飼料のタンパク質源である大豆などに多く含まれていることから、配合飼料や脱脂大豆を利用していればその摂取不足を心配する必要はありません。 さらに、メチオニンは放牧草やアルファルファ乾草などにも比較的多く含まれているため、サラブレッドの生産現場で問題となることはないと考えて良いでしょう。

※ 生体内で必要量の全てを合成できないため、不足分を食餌で摂取する必要のあるアミノ酸のこと

ビオチン

 蹄のケラチン合成に必要なビオチンはビタミンB群に分類されるビタミンで、馬での必要量は明らかではないものの腸内細菌で合成されることや飼料中にも含まれていることから、大豆や青草を給与している馬では不足することはないと考えられています。しかし、外的なストレスや食餌によってビオチンを合成する腸内細菌の数や活動が影響を受け、ビオチンが十分に合成されなくなることも考えられます。ビオチンが馬の蹄に与える影響は非常に大きいため、この影響についての研究が盛んに行われているところです。

 ある研究では、サラブレッドにビオチン(15mg/日)を10ヶ月間給与すると蹄の伸長量が1.8cm増加することが報告されています(図1)。またスペイン乗馬学校繋養のリピッツァナー種牡馬にビオチン(20mg/日)を19ヶ月間給与した研究によると、削蹄時の蹄壁、蹄底、蹄叉および白線における亀裂、硬度などを4段階にスコア化(図2)すると、給与開始後の各項目でスコアの良化がみられ蹄の状態が良化したことを示唆する結果が得られたと報告されています(図3)。この蹄の状態変化が見られたのはビオチンの給与開始から11ヶ月後であったことから、ビオチンによる蹄の状態改善には長期間が必要であることも分かりました。

現在市販されているほとんどの蹄用サプリメントにはビオチンが含まれていますが、これらは他のサプリメントに比べて高価です。したがって、ビオチンを給与する際は最もその効果を得たいゴールとなる期日を設定し、それまでの繋養期間や経費を勘案した上で給与を開始するタイミングを検討する必要があるでしょう。Photo図1 ビオチン投与が蹄の伸長に及ぼす影響  

ビオチン投与開始からの蹄壁部の伸長の変化を調べた。ビオチン投与群の10カ月間の蹄の伸長は、非投与群に比べて1.8㎝大きかった。Equine Vet.J.(1992)24(6)472-474

Photo_2

図2  蹄状態のスコアー化   

白線裂、蟻洞、欠損、亀裂などから蹄の状態をスコアー化し判定する  Equine vet. J. (1995) 27 (3) 175-182

Photo_3図3  ビオチン投与が蹄状態に及ぼす影響

スコアーが低いほど蹄の状態が良いことが示されており、ビオチン投与開始から9ヶ月目(2年目の1月)以降に蹄の状態が良化してきた  

亜鉛

 亜鉛は、蹄の角質化に必要なミネラルです。ある研究で、蹄の物理的硬度や酸溶液に対する溶解性を“弱”・“中”・“強”の3段階の強度で分類すると、それぞれの蹄に含まれていた亜鉛濃度は、順に115.0、119.4、および129.4ppm(mg/kg)であったことが報告されています。つまり、蹄に含まれる亜鉛濃度が高いほど蹄の硬度も高いということが分かり、亜鉛の摂取不足から蹄が脆弱になる可能性があることが分かります。

 

その他の栄養

 その他、カルシウム、リン、マグネシウム、銅およびコバルトなどのミネラルも蹄の健常性に必要な栄養です。カルシウムは蹄の構造上で重要な役割を果たしますが、このカルシウムとリンの摂取バランスが崩れると、カルシウムの吸収が阻害されてカルシウム不足に陥ることが知られています。フスマの過剰給与から蹄が脆弱になるということはよく知られていますが、これはフスマに含まれるリンの含量が高いことが根拠となったのかもしれません。しかし、飼料全体に含まれるカルシウムとリンのバランスが適正(カルシウム:リン=1.5~2:1)であれば、フスマの過剰摂取が蹄に影響を及ぼすことはありません。

おわりに

 インターネットで少し調べるだけで、蹄に良いとされるサプリメントが数多く販売されていることが分かります。もし、皆さんが繋養馬の蹄にお悩みであれば、これらのサプリメントを利用することで解決できることもあるでしょう。でもちょっと待ってください。もしかすると、単に飼葉の栄養のアンバランスが原因であるだけかもしれません。新しいサプリメントを導入する前に、ぜひ現在の飼葉について栄養計算ソフトなどで確認してみましょう。

日高育成牧場 生産育成研究室 主任研究役 松井 朗

2021年1月27日 (水)

繁殖牝馬のクッシング病(PPID)

はじめに

現在、国内におけるサラブレッド生産現場には、約1万頭の繁殖牝馬が繋養されています。その多くは年齢とともに受胎率が低下することが分かっていて、高齢繁殖牝馬は更新することが推奨されています。しかし、高齢繁殖牝馬の中にも血統的・経済的に価値の高い馬が存在することもあり、高齢馬における繁殖能力の維持・向上も求められているのも現状です。

高齢繁殖牝馬の受胎率低下の要因として、子宮や膣の加齢性変化や子宮内膜炎などの感染性疾患、分娩時の産道の物理的損傷などが考えられます。しかし、それらの根本的な原因として加齢に伴う視床下部-下垂体-副腎軸の異常が直接的あるいは間接的に関与していることが考えられています。この内分泌異常の代表的なものが「馬クッシング病」です。

 

馬クッシング病

臨床症状は多毛、多飲、多尿、多汗、体重や筋肉量の減少、蹄葉炎、免疫能低下による呼吸器及び泌尿器感染症(易感染)、創傷治癒の遅延、繁殖障害(不発情回帰、長期不妊)などとなります。特に換毛不良による巻毛、腹部の筋緊張低下による腹部下垂の体型が典型的な特徴所見となり、牡にも牝にも発症する疾患ですが、生産地では高齢の繁殖牝馬に多く認められることになります(図1)。

 

1_5

図1 特徴的な換毛異常と筋肉量の減少

 

発症原因

馬クッシング病は、他の動物とは発症原因が異なり、脳下垂体中葉を支配する神経からのドーパミン分泌低下による中葉細胞の異常増殖により引き起こされる下垂体の疾患です(図2、3)。そのため、馬クッシング病は下垂体中葉機能障害(PPID:Pituitary pars intermedia dysfunction)と呼ばれています。中葉の過形成に伴い過剰分泌されるα-MSHやニューロペプチドはプロラクチンの過剰分泌や関連する代謝異常を引き起こします。さらに視床下部の物理的圧迫はPPIDの多様な症状を発現する原因となることが知られています。繁殖牝馬では、これら内分泌異常による繁殖障害に陥ると考えられています。

 

2_5

図2 脳における下垂体の位置

 

 

3_4

図3 PPID発症馬の下垂体断面

中葉の過形成により大部分を占める(日獣会誌2012)

 

 

診断方法

PPIDの診断方法の一つに、副腎皮質刺激ホルモン(ACTH)測定試験があります。正常馬においても血中ACTH濃度には季節周期性が認められ、夏から秋(8月~10月)にかけて比較的高値を示すことが知られていますが、PPID発症馬では1年を通じて正常馬よりも高値を示します(図4)。そのため11月中旬から7月中旬にかけては40pg/ml(ng/l)以上で陽性、それ以外の時期は100pg/ml以上で陽性と診断が可能とされています。

4_3

図4 ACTH血中濃度の季節変動

Equine Vet. Educ. 2014)

 

治療方法

内科的療法としてドーパミン作動薬(Pergolide)が対症療法として用いられています。低濃度薬量の投与から開始して、臨床症状の改善度合いと副作用発現(食欲不振、疝痛、下痢など)などを監視しながら、必要に応じて薬容量の増加を行う指針が示されています。

 

発症予防

発症予防には、若い頃からの飼養管理が重要と考えられています。繁殖馬の多くは加齢性にインシュリン抵抗性が増すことで、馬メタボリック症候群(EMS)に罹患することが近年問題となっていますが、EMSはPPIDと併発することが多く、胎盤炎や蹄葉炎などの炎症性疾患を助長する要因になっていると考えられています。EMSを予防することがPPIDの予防に繋がるのかも知れません。

 

最後に

これまで、本邦のサラブレッド繁殖牝馬におけるPPIDに関する調査報告は少なく、その現状や対処方法について分かっていないのが現状です。そこで現在、我々が取り組んでいる生産地疾病等調査研究では、サラブレッド繁殖牝馬のPPID罹患状況について血中ACTH濃度測定法によりサーベイし、その受胎成績に与える影響を検証することを計画しています。これによりPPIDの病態や予防、治療方法が解明されることで繁殖牝馬の生産性の向上に貢献できればと考えています。どうか調査にご協力いただければ幸いです。

日高育成牧場生産育成研究室 室長 佐藤文夫

若馬に見られる頸椎X線所見

はじめに

育成期の若馬にしばしば発症するウォブラー症候群(腰痿)は、主に後躯の運動失調や不全麻痺などの神経症状を呈する疾患です。近年、その病態から頸椎狭窄性脊髄症(CSM:Cervical Stenotic Myelopathy)という病名が相応しいとされています。発症要因から大きく分けて2つのタイプがあることが知られています。すなわち、Type I型は第3-4頸椎の配列の変位による脊髄神経の圧迫変性、Type II型は第5-7頸椎関節面の離断性骨軟骨症(OCD)による脊髄神経の圧迫変性です。しかし、このような所見について発症馬に関する報告は多く認めるものの、健常馬に関する報告は殆ど無いのが現状です。そこで生産育成研究室では、健常1歳馬における頸椎Ⅹ線検査所見の保有状況について明らかにするとともに、そこで認められる所見の発生時期と変化についても調査してきましたので、その一部分を紹介したいと思います。

 

健常馬における保有状況

国内で開催されたサラブレッド1歳市場で購買された健常馬合計240頭(牡122頭、牝118頭)を用いて10月の時点(15-20カ月齢)で頸椎X線検査を実施し、頸椎配列の変位および頸椎関節突起の離断骨片、肥大所見の保有状況について解析しました。その結果、頸椎配列の変位は4.2%(牡9、牝1)の馬にみられ、その所見は全て第3-4頸椎間に見られました。関節面の離断骨片は17.1%(牡27、牝14)の馬にみられ、主に第5-6-7頸椎間に見られました。関節面の肥大は9.1%(牡8、牝5)の馬にみられ、全て第5-6-7頸椎間に見られました(表1、図1)。これらの馬は、翌年4月までの6カ月間、馴致および騎乗調教が実施されましたが、その間に不全麻痺などの神経症状を発症する個体はいませんでした。

1_2

(表1)頸椎X線所見の保有状況

(240頭:牡122頭、牝118頭)

2_2

(図1)供試馬に認められた頸椎X線所見の例

A:頸椎配列の変位

B:頸椎関節面の離断骨片

C:頸椎関節面の肥大



 

発生時期とその経時的変化

サラブレッド20頭(牡12頭、牝8頭)の誕生から15か月齢まで1ヶ月置きに頸椎X線検査を実施し、頸椎X線所見について解析しました。その結果、生後2~6ヶ月齢の6頭(牡5頭、牝1頭)の頸椎突起関節面にOCD様所見の発生が認められました。これらのOCD様所見のうち3頭の所見は次第に治癒する様子が認められましたが、残りの3頭に認められた所見は関節面の離断骨片から肥大所見へと変化し残存しました(図2)。

 

3

(図2)第5-6頸椎間関節突起に認められたOCD様X線所見の変化

2ヶ月齢および5か月齢で認められたOCD様所見。次第に癒合したが、関節面は肥大化した。

考察

健常1歳馬の頸椎にも脊髄神経を圧迫する要因となりうるX線所見が多くみられることが明らかになりました。理由は知られていませんが、ウォブラー症候群の発症は牡馬に多いことが知られています。今回の調査において、頸椎X線所見が牡馬に多く認められたことは、これまでの報告を裏付けるものかもしれません。

今回の頸椎X線検査の有所見馬は、すべてが発症には至ることは無かったことから、これらの所見は四肢関節に多く認められるDOD所見と同様にありふれた所見であり、多くの所見は問題とはなり得ないものと思われます。しかしながら、認められた所見は発症馬の頸椎には必ずといってもよい程に認められる所見であり、脊髄神経の変性を引き起こす原因の一つとなることが知られていることから、その部位と程度、飼養環境、新たな診断方法などについて、これからも検討が必要であると思われます。

頸椎X線所見の発生時期は、離乳前のまだ幼弱で成長段階にある頸椎関節に起こる骨軟骨病変であることも明らかになり、この時期の飼養管理が重要であることが分かります。

今後も症例を増やして調査していくことで、ウォブラー症候群発症の予防や発症馬の予後判断に活用できる知見になると思われます。

 

 

日高育成牧場生産育成研究室 室長 佐藤文夫

2021年1月25日 (月)

サラブレッドの発汗について

はじめに 

今年の夏も猛暑といわれ、2年後の東京オリンピック開催に向けて、競技に参加するアスリートや観客に対する熱中症対策が話題になっています。真夏の中央競馬は、基本的に涼しい過ごしやすい地域で開催されていますが、真夏の猛暑から逃れられる競馬場はほとんどありません。当然のことながら、レースの後に熱中症を発症する競走馬は少なくありません。熱中症の大きな要因は脱水による体温上昇であり、脱水は発汗によって引き起こされます。

 

なぜ発汗するのか?

 気温が高いときや運動した時に、体温の上昇を避けるために発汗します。運動中、筋肉を動かすためのエネルギーを生成するのと同時に、熱エネルギーが生成されます。この熱エネルギーが体内に貯まり続けると、体温は上昇していき、生理的な機能が正常に作動しなくなってしまいます。当然、体内への熱の蓄積が過度になると、生理機能が損なわれる以前に、運動の持続が不可能となってしまいます。そうならないために、運動に伴い発汗し、体内の熱を放散します。汗中の水分が熱を吸収するのと同時に、体表面の汗が蒸発する際に発生する気化熱により体表面の熱を奪います。

したがって、発汗によって効率よく熱を放散させるには、流れ出た汗がすみやかに蒸発することが好ましいといえます。発汗による放熱は、よく車のラジエターに例えられます。ライジエターは幾重にも層になった羽根から構成されていますが、これは空気に触れる表面積を大きくし、熱を放散がしやすくするためです(図1)。動物の放熱も体表面積が大きく、大気に接する面が大きい程、効果的に熱放散ができます。ヒトは体重60kgでその体表面積が約1.7m2であるのに対して、馬は体重500kgで約5 m2であり、体重当たりで比べるとヒトが体重1kg当たり約0.03 m2であるのに比べ、馬は約0.01 m2と3分の1程度しかありません(図2)。このことから、馬はヒトに比べて、効率的に熱を放散できない動物であることが分かります。

1_19

2_19



 

白い汗  ラセリン

馬が多量に発汗しているとき、汗が白くなっている様子がみられます。たまに、塩が多く含まれるため、汗が白くみえるという誤解がありますが、実際は塩のために白くなっているわけではありません。白く見えるのは、汗が細かい気泡によって泡だっているためです。汗が泡立つのは、汗中にラセリンと呼ばれる糖タンパク質が含まるためであり、このラセリンは洗剤などの界面活性剤と同様の性質があります。体表面の汗が蒸発することで、体表面の熱を放散できますが、効率的に汗が蒸発するためには、体表面で汗が広がる必要があります。ヒトの体表面には被毛がないため、汗は容易に体表面上で広がりますが、被毛のある馬の場合、通常であれば表面張力によって汗が広がりにくくなります。界面活性剤には表面張力を弱める作用があり、汗にラセリンが含まれることにより、被毛のある体表面上においても、汗が広がりやすくなります(図3)。洗髪の時、シャンプーが毛髪のうえで広がることを思いだしていただけば、このことがイメージしやすいのではないでしょうか。なにげなく見ている白い汗は、馬を暑熱から守る重要な役割をしているわけです。

3_15


 

馬の発汗量

 いったい競走馬は、どれぐらい発汗しているのか?というのは興味のある話題です。一方で、馬の発汗量を調べるのは意外と難しく、その情報量は多くありません。馬が速歩(3.5m/s)で6時間走ったときの発汗量は約27kgであったことなどが報告されていますが、ほとんどが遅めの速度で長時間走ったときの発汗量について調べたものです。

 私たちは、トレッドミル上で高強度の運動を負荷した時の発汗量は調べました。運動の内容は高強度の調教をイメージし、主運動としてハロン15~16秒のギャロップを2分行いました。その前後のウォーミングアップならびにクーリングダウンを加えた20分間の運動中の発汗量を調べました。発汗量は気候環境の影響を大きく受けるため、試験は夏期(気温30℃:湿度55%)、秋期(24℃:59%)、冬期(10℃:30%)のそれぞれ異なる時期に行いました。夏期、秋期、冬期の発汗量はそれぞれ、2.90、2.21、0.44kgでした(図4)。やはり、高温・多湿の夏期の発汗量が一番多くなりましたが、予想されていたよりも少ない結果でした。運動時の水分損失には、発汗のみでなく、呼気による肺からの水分蒸発も含まれます。このときの発汗量はトレッドミルで運動した20分間のみ測定でしたが、その後も発汗は続いており、酷暑時のレースにおける水分の損失量は約10kgに達するのではないかとされています。

4_8


 

おわりに

 馬にとって運動時に生成される熱を放散するためには、発汗が重要な役割をします。馬の体表面積はヒトに比べると体の割に大きくないため、熱放散には多くの発汗が必要になります。汗中には水分同様に、ナトリウム・塩素・カリウムなどの電解質が多く含まれており、発汗に伴うこれらのミネラルの損失も非常に大きくなります。競走馬への暑熱対策には、水分ならびに電解質の補給が重要となってきます。  

日高育成牧場生産育成研究室 主任研究役 松井 朗

       

妊娠のメカニズム(後半)

 前稿では、交配から受精、卵割、妊娠鑑定、妊娠認識といったイベントを解説しました。本稿ではその後のイベントを順に解説していきます。

 

固着と着床、胚と胎子

 「固着fixation」は排卵16日目頃に起こるウマ特有現象で、胚胞が子宮と接着することを指します。双子が隣接して固着した場合には一方のみを処置することが難しいため、固着する前に双胎の確認をしなくてはなりません。一般の哺乳類では、胚胞と子宮が接着するとすぐに着床implantationが起こります。着床とは胎子側の組織と母体側の組織(子宮)が互いに反応して胎盤形成を開始することを意味しますが、ウマでは着床に先駆けて固着が起こるため、着床は排卵後40日頃と遅いのが特徴です。この母子の組織的な交わりを境に、胚embryoは胎子fetusと呼ばれるようになります。つまり、40日齢までが胚であり、それまでに消失するものが胚死滅と言われます。

 

子宮内膜杯・二次黄体

 着床が起こると、胎子組織の一部が子宮組織に入り込み子宮内膜杯endometrium cupを形成します。この子宮内膜杯がeCGというホルモンを分泌し、卵巣に二次黄体の形成を促します。この頃には一次黄体が退行しかかっていますので、二次黄体の形成は黄体ホルモンのブースト作用として妊娠に必須な現象です。胚死滅予防のため黄体ホルモン剤を投与する場合には、この二次黄体が形成されるタイミング(6-7週目)が投与終了の一つの目安となります(図1)。子宮内膜杯はもう一つ臨床上重要な意味があります。一旦子宮内膜杯が形成されると、仮に胎子が死亡してしまった場合にも子宮内膜杯が遺残し、eCGを分泌し続けるため発情が回帰しません。同シーズン中に再交配できないことから、通常の妊娠確認は6週目の胚死滅が起こらなかったことをもって検査終了されます。7週目移行は安定期だから検査しないわけではないことにご留意下さい。

1_15

図1 妊娠馬の血中プロゲステロン濃度の推移

 

胎盤形成

 胎盤placentaはあらゆる胎生哺乳類において形成され、基本的な機能は共通するものの、その形態は動物種によってかなり異なります。例えば、ヒトの胎盤は文字通り盤状をしていますが、イヌ・ネコでは帯状、ウシでは丘阜状、そしてウマは散在性と言われています(図2)。散在性胎盤の組織構造は母子血管の距離が離れているためガス・栄養交換の効率が悪いのですが、子宮全体に広く広がることで効率の悪さを補っています。また、子宮上皮細胞層が残っていることは分娩時子宮の損傷が小さいことを意味し、分娩後わずか10日で迎える初回発情での受胎性に貢献しています。

 ウマの胎盤は妊娠維持自体にも大きく寄与しています。前述の通り、黄体ホルモンは一次黄体から二次黄体に引き継がれますが、その後分泌源はさらに胎盤に移行します(図1)。胎盤由来の黄体ホルモン類(厳密には黄体ホルモンそのものではない)が子宮平滑筋を弛緩させる一方頸管をギュッと閉じ、妊娠維持に寄与します。

2_15

図2 動物種による胎盤の違い

 

前置胎盤?早期胎盤剥離?

 これまで述べてきたように、ウマとヒトでは妊娠メカニズムが異なります。これを踏まえない誤解の例を一つお示しします。分娩時のレッドバックは前置胎盤や早期胎盤剥離と呼ばれてきました。しかし、これらはいずれもヒト産科で用いられている用語であり、必ずしも適当な訳語ではありません。前置胎盤とは厚い盤状胎盤が子宮口に形成されたため、正常な破水・娩出が起こらず問題となります。しかし、そもそもウマ胎盤は子宮口を含む子宮全体に裏打ちされていますので、同一の病態でないことは明らかです(図3)。ヒトの胎盤早期剥離は分娩予定日よりも早期に胎盤が剥がれることを指しますが、レッドバックの起こる時期は基本的に予定日前後です。英語でpremature placental separationと言うこともあるため必ずしも誤訳とは言えませんが、ヒト医療で言われているソウハクとは明らかに異なる病態です。レッドバックの実態は、胎盤炎によって肥厚した胎盤が破れずに娩出されることと言われており、残念ながらこれに合致するヒト医療用語はありません。筆者個人の考えですが、無理にヒト用語を当てはめるとかえって混乱を招きかねませんので、この例では「レッドバック」と言うのが適当ではないでしょうか。

3_12

図3 ヒトとウマの胎盤の違い

   

日高育成牧場生産育成研究室 村瀬晴崇

乳酸を利用した育成トレーニングの評価 ②

 今回は、育成馬における血中乳酸値の応用方法を紹介します。

 

乳酸値の測定方法

 筋肉内で産生された乳酸は“モノカルボン酸輸送担体”の作用により血流に入るので、血液中の乳酸値を測定すれば筋肉でどれぐらい乳酸が産生されたかを評価することができます。測定には専用の機器が必要で、以前は100万円以上する高価なものでしたが、近年は比較的安価でポータブルな機器が利用されています(写真1)。この機器は、毎回センサーチップを交換する必要がありますが、先端にわずかな血液を付着すれば10数秒で乳酸値を測定できるので、調教現場でも利用できる便利なものです。このような乳酸測定器は、現在多くのスポーツ現場や競走馬調教で利用されています。

1_7

写真1 乳酸測定器と測定方法

 A:ポータブル乳酸測定器(アークレイ社製・ラクテートプロ2)とセンサーチップ、B:走行直後の採血、C:チップの先端にわずかな血液を付着するだけで測定可能(Aの機器では0.01ml)。

血中乳酸値の評価法-運動負荷

 前回紹介したように糖質のエネルギー代謝には解糖系と酸化系があり、運動強度が弱いと両者がバランスよく働き、乳酸はほとんど産生されません。しかし、運動強度が強くなると解糖系の方が多く働いて乳酸が産生され、血中乳酸値が上昇します(図1)。この上昇は運動強度に応じて大きくなるため、乳酸値を見れば馬にどれくらい負荷をかけることができたかを評価することができます。ここで一つの基準となるのが“乳酸蓄積開始点(OBLA)”です。OBLAは血中乳酸値が4mmol/Lになる運動強度を表しており、この辺りから血中乳酸値が上昇し始めることから、人や馬で無酸素性運動の基準強度として利用されています。

 

2_7

図1 調教時の運動強度と必要なエネルギー量・血中乳酸値との関係

 運動強度に比例して必要なエネルギー量が増加し、ある強度以上になると血中乳酸値が上昇する。OBLAは乳酸が上昇し始める運動強度を表している。血中乳酸値の評価法-運動能力

 次に、JRA育成馬で測定したデータから運動能力の評価法を考えてみましょう。図2は、屋内1000m坂路調教後に測定した血中乳酸値と3ハロンの平均速度との関係を示しています。この図を見ると、概ね速度に比例して乳酸値が上昇していることがわかります。この関係を利用して標準直線(回帰直線)を引き、それを基準に評価することで乳酸が産生されやすいかどうか、つまり馬の有酸素性運動能力が高いか低いかを評価することができます。図2を見ると、Horse Aはほとんどの点が直線より下、Horse Bは逆に直線より上にあり、Horse Cは多少ばらつきがあるものの直線近くにあることが分かります。これらのデータから、Horse Aは有酸素性運動能力が高いため乳酸の産生が少なく、Horse C-Horse Bの順に能力が低いと評価できます。このように、乳酸値と速度との関係から得られた標準直線を利用することで、育成馬の有酸素性運動能力を評価することができます。

3_7

図2 屋内1000m坂路走行後の血中乳酸値と走行速度との関係

 JRA育成馬で坂路走行1~2分後に採血を行い、ラクテートプロ2で乳酸値を測定。

 

血中乳酸値で競走能力を評価できるのか?

 有酸素性運動能力は競走馬にとって重要な能力の一つであるため、血中乳酸値は競走能力の一部を反映していると言えます。一方、図2のHorse A-CはすべてJRA2歳戦の勝馬で、Horse Aのような乳酸値が低い馬が勝ち上がるのは理解できますが、Horse Bのような乳酸値が高い馬が勝つことができたのはなぜでしょうか?それには、馬の体質が関係していると考えられます。Horse Aはスマートな馬でしたが、Horse Bはがっちりした体格をしていました。筋肉量が多いと瞬発力には優れているものの、多くの乳酸が産生されやすいため、長距離よりは短距離向きだと考えられます。実際、Horse Aは1800m戦、Horse Bは1000m戦で勝利しており、Horse Cがその中間1400m戦の勝ち馬であることもこの考えを証明しています。これらのことから、血中乳酸値は馬の有酸素性運動能力だけではなく、距離適性とも関連があるのかもしれません。また、育成馬の場合はその後の成長が競走能力に影響を与えるので、その点も考慮する必要があるでしょう。

 

乳酸値の測定で注意すべきこと

 乳酸値は便利な運動指標ですが、測定時に注意すべき点がいくつかあります。その一つが調教メニューです。調教馬場や距離が変われば筋肉への負荷が変わるので血中乳酸値が変わり、ウォームアップもエネルギー代謝に影響を与えるため値が変動する可能性があります。したがって、乳酸値を利用する場合は基本的に同じ馬場・同じパターンで調教することが重要です。もう一つは採血のタイミングです。図3はトレッドミル上で1000m走を行ったときの血中乳酸値の変化を表しています。乳酸値が10mmol/Lを超える運動を行った場合は5分後まで高値で維持されますが、3~6mmol/Lの場合は1分以内に最大値になり10分後には最大値の1/2以下まで低下します。したがって、この影響を小さくするためには、調教終了後できるだけ早く毎回同じタイミングで採血することが重要です。また、採血管を利用する場合は、採血管内での糖質代謝を防ぐためフッ化ナトリウム入り採血管の使用をお勧めします。

4_4

図3 調教後の血中乳酸値の変化

 サラブレッド実験馬を用い、傾斜7%のトレッドミルにおいて3段階の速度で1000m走(網掛け部)を実施し、その後の15分間常歩運動を行った。

 

最後に

 乳酸は、採血が必要で注意事項が多いことから難しそうに感じますが、坂路調教など一定距離の調教時に利用すれば非常に便利な指標です。興味がある育成関係者は、一度乳酸測定にチャレンジしてはいかがでしょうか?乳酸のことをより詳しく知りたい方は、東京大学・八田秀雄教授の著書で勉強されることをお勧めします。

 

 

日高育成牧場・生産育成研究室 室長 羽田哲朗(現・美浦トレーニングセンター 主任臨床獣医役)

2021年1月22日 (金)

日高育成牧場が取り組んでいる馬獣医学支援について

加計学園問題が国会でも取りざたされておりご存知の方も多いと思いますが、全国的に獣医師が不足している状況です。それは皆さんの身近にいる競走馬の獣医さんも例外ではなく、われわれ馬獣医師が頭を悩ましている問題の一つとなっています。JRAでは、現役の獣医学生たちが馬の臨床獣医師に興味を持ってもらえるように、様々な取り組みを行っています。今回は、日高育成牧場が取り組んでいる馬獣医学支援について紹介します。

日高育成牧場スプリングキャンプ&サマーセミナー
日高育成牧場が参加学生を募集して実施している研修が、スプリングキャンプとサマーセミナーです。どちらも、日高育成牧場に1週間ほど滞在して様々な経験をしてもらう研修スタイルを取っています。まず春休みに実施しているスプリングキャンプですが、春は競走馬の生産育成にとってはオンシーズン。育成ではJRA育成馬の調教から心拍数・乳酸値を使った体力測定などを見学し、生産では繁殖牝馬のエコー検査を体験したり、JBBAで種付けの様子を見学してもらったりします(写真1)。またタイミングが合えば、ホームブレッド誕生の瞬間に立ち会うこともできます。そのため、スプリングキャンプは北海道で馬獣医師が関わる生産育成の仕事の多くを体験することができる研修です。

1_26

写真1:繁殖牝馬のエコー検査を体験する獣医学生たち


次に夏休みに実施しているサマーセミナーですが、夏は競走馬の生産育成にとってはどちらかと言えばオフシーズン。そのため、スプリングキャンプとは趣向を変えて獣医学的研修に主眼を置き、馬の採血やエコー検査、レントゲン撮影などを体験してもらいます。また、他の時期には経験できないサマーセール(1歳馬のせり)や札幌競馬場におけるJRA獣医師の業務見学も行っています。スプリング・サマーともに座学(授業)と厩舎作業がセットになっており、馬に関する獣医学的知識や技術だけではなく、馬の取り扱いまで幅広く学べる研修を目指しています。近年JRAで働く獣医師の中でスプリングキャンプやサマーセミナーに参加した者は少なくなく、少し手前味噌になるかもしれませんが競走馬の獣医師を目指す学生にとっては良い研修ではないかと考えています(写真2)。

2_22

写真2:2011年にサマースクールに参加した水上獣医師(中央の赤い帽子)。現在は、日高育成牧場の臨床獣医師として活躍しています。

獣医学生見学研修
スプリングキャンプとサマーセミナー以外に、日高育成牧場では大学からの依頼を受けて獣医学生向けの見学研修を実施しています。いずれも半日から1日単位の研修で、内容は大学の希望に応じて決めています。今年9月に行った帯広畜産大4年生の研修では、日高育成牧場で育成調教(馴致)を見学した後、BTCで施設・調教・競走馬診療所を見学し、昼休みにサラブレッドの育成に関するランチョンセミナーを行って、最後に今年生まれたホームブレッド当歳馬と触れ合いながら馬の生産について説明しました(写真3)。また、時期によっては妊娠馬を用いた胎子のエコー検査や離乳(親子別れの儀式)を見学してもらうこともあります。いずれにしても、個人単位ではなく学校・学年単位で申し込んでいただくことになります。ご興味のある教職員の方は、ぜひ日高育成牧場にお問い合わせください。

3_17

写真3:当歳馬と触れ合いながら馬の生産について説明を受ける学生たち

獣医大学での特別講義
私の学生時代とは違い、近年は各獣医大学とも馬獣医学教育に積極的に取り組んでいます。しかし、欧米とは違い日本の大学内で馬獣医学を教えられる教員の数は少なく、日本全国からJRAに特別講義の講師依頼が届きます。日高育成牧場にも年数件の講師派遣依頼があり、獣医師が大学に赴いて馬の繁殖学や生産・育成に関する特別講義を行っています。

おわりに
研修に参加した獣医学生にはしばしばお話しするのですが、獣医師にとって学生時代は将来の人生(仕事)を選択する大事な時期になります。したがって、大学に在籍している時にさまざまな研修に参加して獣医師が行う仕事を多く体験することは重要で、将来の選択肢が増え自分に合った仕事を見つけやすくなると思います。少しでも馬獣医師に興味がある方は積極的にスプリングキャンプやサマーセミナーなどの研修に参加し、最終的に将来の仕事として馬獣医師を目指してもらえるようになれば幸いです。いつの日か競走馬の臨床現場でお会いできることを楽しみにしています。

日高育成牧場生産育成研究室 室長 羽田哲朗

【海外学術情報】 第62回アメリカ馬臨床獣医師学会(AAEP)

はじめに

AAEPは、馬に関する調査研究や臨床教育、最新の医療機器や飼料などの展示も行われる学会です。2016年はフロリダのオーランドで12月3~7日に開催され、世界各国から約2,300人の馬臨床獣医師が参加しました(図1)。日本からは、私の他にも数名の日高で顔なじみの臨床獣医師さん達が参加しました。今回はこの学会の中から興味を持った演題について3つ紹介したいと思います。

 

  • 大腿骨内側顆のX線異常所見の発生とその変化について

北米では11月の当歳セリに向けて、離乳直後の時期にX線スクリーニング検査が行われるのが一般的で、その結果をもって売却方針や治療方針が決められています。その後も、当歳・1歳・2歳とセリに出る度にレポジトリー資料用のX線検査が何度か行われます。Dr. Spike-Pierce(Rood and Riddle Equine Hospital)は、そのX線資料を解析し、離乳後の当歳馬の約5.3%(76/1,444頭)の大腿骨内側顆にすでにX線異常所見が認められることを報告しました。このことから本疾病の発生時期も他の部位に発生する骨嚢胞や離断性骨軟骨症と同様に、成長盛んな離乳前後であることが分かります。さらに、異常所見の経過を解析したところ、その約6割は1歳セリまでに良化していました。一方で、関節面に1.5㎝以上のX線透過像を有する場合やシスト像の所見を有する場合は、改善しない割合が高くなりました。骨嚢胞を有する場合、運動制限は有効な対処法の1つであり、当歳馬のX線スクリーニング検査は、所見の早期発見・早期治療に有用であると考えられます。また、大腿骨内側顆の軟骨下骨嚢胞はセリでの馬の価格を下げる要因となってしまいますが、僅かなX線所見(図2)の場合は良化することも多く、競走パフォーマンス下げる要因では無いことも強調していました。

 

  • ヘパリン投与による馬ヘルペス脊髄脳症(EHM)の発症防御

EHMは、馬ヘルペスウィルス1型(EHV-1)感染による重篤な症状の1つです。EHV-1感染症は馬鼻肺炎とも呼ばれ、生産地では若馬の呼吸器病や妊娠馬の流産・死産を引き起こすことから、気を付けなくてはならない病気です。講演では最近発表されたトピック論文としてDr. Walter J.(Zurich大学)の研究が紹介されました。EHV-1感染では2峰性の発熱が起こることが知られていますが、最初の発熱(38℃以上)が認められた時点で抗凝血薬であるヘパリン製剤(25,000単位・1日2回)を3日間投与することで、非投与群に比べて発熱期間およびEHMの発症が有意に抑えられたというものです。また、非投与群の発症馬の中には流産の発生が6頭含まれていましたが、投与群の中に流産の発生馬はいませんでした。EHMの発症は、ウイルスが感染する際に脳や脊髄の血管に血栓による障害が起こることで発症することが知られています。ヘパリンは血栓の発生を抑えるとともにウイルスの細胞への侵入を抑制する作用も考えられていますが、まだ発症防御メカニズムの詳細に関しては解明されていません。現在、EHV-1による妊娠後期の流産予防にはワクチン接種や消毒の徹底が有効とされていますが、発症の拡散防止にヘパリンによる治療も有効となれば素晴らしい発見です。今後の更なる研究が期待されます。

 

  • リハビリテーション管理における関節可動領域の改善処置

リハビリテーションの目標は、健全な機能をなるべく短期間の内に元の状態に戻すことです。馬でも腱靭帯炎や骨折や関節疾患により長期間運動を制限されることで関節可動域が減少してしまう場合があります。Dr. Adair S.(Tennessee大学)は、超音波やレーザー治療、加温や冷却療法、スイミングプールやウォータートレッドミルなどを使用したリハビリテーション管理を紹介する中で、慢性期におけるプログラムとして横木(おうぼく)障害の利用について紹介していました。横木を馬が跨ぐことにより、関節の可動域を広げることが可能になるだけでなく、末梢神経を介した運動感覚機能も改善されるというものです。横木の高さや配置を変えることで関節の可動域を調節することも可能になります。この横木を利用した運動は、健常な中期・後期の育成馬にも応用可能であると思われます。普段の飼養管理や調教の一部にアレンジして取り入れてみるのも良いと思いました。

 

最後に

海外の学会に参加することで、最新の様々な情報を得ることができます。一方で、近年は日高発の調査研究や獣医診療技術が紹介される機会も増えてきていると実感します。海外の研究成果や飼養管理技術を学び、応用可能なものを導入していくことはもちろん有用ですが、今後は日高発の研究成果を海外の国際学会の場で積極的に発信していくことが日本の馬産業が世界で同等に関わり続けていく上でとても大切なことと思われます。今後も日高育成牧場で行う調査研究へのご理解とご協力を宜しくお願い申し上げます。

 

1_4 (図1)AAEPメイン会場での講演の様子

 

2_4 (図2)大腿骨内側顆の関節面に認められる僅かなX線透過像

当歳の離乳時期に発生することが多いが、1歳時までに良化するものが多い。

 

3_3 (図3)横木を跨ぐ様子

横木などの障害を利用することで関節の可動範囲を広げることができる。

生産育成研究室

研究役 佐藤文夫

2020年5月28日 (木)

胎盤炎

No.158(2016年11月1日号)

 

 繁殖シーズンからの牧草作業、セール、そして離乳も落ち着き、生産者の皆様はようやく一息つける時期かと推察します。この時期、毎日繁殖牝馬を管理していても胎子の発育を感じにくいものですが、お腹の中で着実に成長しています。しかし、妊娠中は常に流産のリスクがあり、実はおなかの中では流産に向けて異常が進行しているかもしれません。本稿では感染性流産の主な原因である「胎盤炎」についてご紹介いたします。

 

胎盤炎とは

 胎盤とは我々哺乳類のみがもつ組織です。母馬にとって異物である胎子を許容し、栄養供給、ガス交換、老廃物の除去、妊娠維持に必要なホルモンの分泌など多くの役割を担います。胎盤に感染・炎症が起こると、上述したさまざまな機能が阻害され、胎子の発育遅延や死亡に至ります。

 胎盤炎は、感染性胎盤炎あるいは上向性胎盤炎とも言われます。つまり、細菌や真菌(カビ)といった病原微生物が外陰部から頚管を通って(上向性に)子宮に侵入し、胎盤を侵します。主な原因菌は大腸菌や連鎖球菌、アスペルギルスといった一般環境中にいるものです。高温多湿な日本では海外よりカビの割合が多いのですが、カビは細菌よりも治りづらく、やっかいです。そのため、妊娠馬にはカビで汚染された寝藁や乾燥を与えないようにしましょう。

 胎盤炎は時間をかけて進行します。陰部滲出液、乳房腫脹といった異常が認められる時点では、すでにお腹の中の病態は進行しています。そのため、流産を防ぐためにはこのような症状を示す前に異常を診断し、治療を始めることが重要となります。

 

早期の診断が重要

 胎盤も炎症が起きると腫れるため、超音波検査で胎盤の厚みを計測することで診断できます。この指標はCTUP(Combined Thickness of Uterus and Placenta:子宮胎盤厚)と呼ばれ、エコーを用いた直検で簡単に計れます。また、ホルモン検査も有効です。胎盤や胎子の異常はホルモン代謝異常を来たすことが多いため、母馬の血液中ホルモンを測定することで早期に異常を診断できます。しかし、ホルモンは個体差が大きいため、1回の測定では微妙な判定はできません。そのため、妊娠7ヶ月以降において継続的に測定(モニタリング)することにより、より正確な診断が可能となります。妊娠馬全頭にホルモン検査を行うのは現実的ではないかもしれませんが、過去に流産歴のある馬だけでも検討してみてはいかがでしょうか。

 

胎盤炎の治療

 胎盤炎には治療が必要です。感染に対して抗菌剤(主にST合剤)、炎症に対して抗炎症剤(主にバナミン)、陣痛抑制剤として子宮収縮抑制剤(リトドリン製剤)や黄体ホルモン剤(プロゲストンやレギュメイト)、海外では抹消血管拡張剤(ペントキシフィリン)が用いられます。ただ残念ながら、現状では確実に流産を防げるわけではありません。十分な治療成果が得られない理由としては、発見の遅れ、注射剤を含めて十分な投薬が難しいこと、真菌に対しては抗菌剤が効かないこと、ヒトのように絶対安静ができないことなどが挙げられます。

 

 さまざまある流産原因の中で、胎盤炎は感染実験を含め、比較的研究が進んでいると言えます。まだまだ十分ではありませんが、流産を予防するためには、新しい知見を積極的に利用してみることが必要です。生産者の皆様には新しい検査法・治療法についてのご理解よろしくお願いします。

 
1_5
写真1 感染胎盤。破膜部(上方)が変性して白くなっている。右の胎盤は底側(写真左側)に広く膿が付着している。

 
2_4
写真2 正常なCTUP像。妊娠後期には胎盤が発達し、子宮と胎盤の2層構造が確認できる。異常時には胎盤の肥厚や剥離が認められる。

 

 

(日高育成牧場 生産育成研究室 村瀬晴崇)

当歳馬の放牧草の採食量

No.157(2016年10月15日号)

  

 発育中の若馬は、放牧により様々な恩恵を得ることができます。放牧地での自発的な運動は、基礎体力の向上、心肺機能および骨や腱の発達に有用です。また、集団で放牧することにより、母馬以外の他個体に接し、社会の一員となることは、将来、競走馬として競っていくためには重要な役割を果たしていると考えられます。

  

放牧草はウマ本来の飼料

 放牧地の牧草は、栄養がバランスよく含まれており、若馬にとって非常に優れた飼料であるといえます。馬が24時間放牧されているとき、平均で12.5時間採食することが報告されており、季節によっては、放牧草を16-17時間採食している場合もあります。このように、日中のほとんどの時間を採食に費やしていることから、ウマは”不断食の動物”と呼ばれます。ウマの胃は体のわりに非常に小さく、一度にたくさん食べることができません。したがって、少しずつの量を、途切れなく食べるのが、ウマ本来の食べ方であるといえます。

  

子馬にとっての放牧草

 生まれた直後に、子馬が栄養として摂取するのは母乳のみです。生後すぐから母馬の真似をして牧草を食べだす場合もありますが、ほとんどは栄養としては利用できていないようです。ウマが牧草の繊維成分を栄養として利用するには、盲腸および結腸内の繊維分解性の微生物が必要となります。生まれたての子馬の消化器官には、この微生物がほとんど存在しておらず、成長の過程において経口で取り込んでいくとされています。

 微生物を取り込むための顕著な行動が、母馬の糞を食べることです。食糞行動は、生後1週間くらいにみられますが、全ての子馬が実際に食糞をしているのかよく分かっていません。仮に食糞していなくても、子馬が口をつける可能性のある、牧草や敷料に糞由来の微生物が付着しているため、いずれは消化管内に繊維分解性の微生物を獲得することが可能です。

  

子馬の哺乳量

 子馬の乳の摂取量は、約2ヵ月齢から減少していきます(図1)。生後すぐの時期は、15~20分おきに哺乳しますが、この時期になると、哺乳回数は1時間に1回もしくは2回程度になっています。成長に伴う哺乳量の減少は、哺乳回数が減ることによります。子馬の成長に伴い必要となるエネルギー量は、増加していきます。2ヵ月齢以降、哺乳量が減る一方で、放牧草の採食量は増加していきます。子馬はいったいどれくらいの量の放牧草を採食しているのでしょうか?1_4図1

 

放牧草の採食量を調べる方法

 『放牧草の採食量はどうしたら分かるの?』という疑問に、少し触れておきましょう。牧草には、ウマがほとんど消化することのできないリグニンと呼ばれる繊維が含まれています。放牧草から摂取したリグニンは、消化できないため全て糞とともに排泄されます。糞中にどれだけリグニンが含まれているのかを調べると、リグニンの摂取量が分かります。

 ウマが食べている個所の牧草を中心にサンプリングし、牧草中のリグニン濃度を調べます。そして、(リグニン摂取量)÷(牧草中のリグニン濃度)を計算することで、放牧草の摂取量が推定できます(図2)。ただし、1日の放牧草の採食量を知るためには、1日に排泄する全糞を採取することが必要となります。2_3図2

 

子馬の放牧草の採食量

 図3に、放牧草の採食量を示しました。5週齢(約1ヵ月齢)までは、放牧草の乾物摂取量は0.5kg以下であり、ほとんど採食していないと言えます。乾物とは、水分を除いた固形成分のことです。例えば、放牧草の場合、季節や草種により変化はありますが、水分含量が4分の3、固形分含量が4分の1程度であり、原物の放牧草を1kg摂取したとき、乾物としては0.25kg摂取したことになります。7から10週齢までの放牧草の乾物摂取量は1kgであり、10週齢以降から採食量は増加していきます。17週齢(約3.5ヵ月齢)で放牧草の乾物摂取量は、2kgに達します。

 図3は10時間放牧したときの採食量ですが、この時期の子馬は、成馬に比べて睡眠時間が長く、昼夜放牧の場合でも採食量はあまり増えないことが予想されます。この時期の乳と放牧草から摂取するカロリー量は、必要量を満たしていますが、銅や亜鉛などの微量ミネラルは必要量を満たしていません。したがって、この時期より以前(理想としては2ヵ月齢)から、クリープフィードにより、これらのミネラルを補給する必要があります。3_3図3


 

(日高育成牧場 生産育成研究室 研究役 松井朗)